
Astronomical Instruments

Software System Design

Fabricio Ferrari

fabricio.ferrari@unipampa.edu.br

Universidade Federal do Pampa
Brasil

CEFCA Meeting, Teruel, Feb 2010

F.Ferrari

Facts

Data is beyond astronomers processing capabilities

Cycle observe�go-home�reduce�analyze�publish

not practical

Instruments are sub utilized; lots of unused data

Telescopes automatized, data analysis mostly manual

Solving problems: easier in hardware, cheaper in software

F.Ferrari

Rationale
Why do we need a software {system|group|meetings}?

∗ Complex instruments ←− complex software

∗ And data not useful without its software:

∗ Thus software is part of instrument

modern instruments = software + hardware

F.Ferrari

What do we need?

We need

hi-level user not aware of hardware details

state-of-art we must trust what we get from software

intelligent system take decisions by itself

automated few decisive user interactions

data processing science out of raw data.

system.

Besides: On-the-�y procedures, pipelined, astronomer-friendly

F.Ferrari

How to put so many pieces together?

Individual processes known (mostly),
but how to integrate them into One System?
Humans: Portuguese, Spanish, French, English, ...
Computers: C/C++, Python, IDL, LabView, ArcView, SML,
VBasic.

F.Ferrari

Software System Guidelines

development,
portability,
integration,
maintenance,

usability

F.Ferrari

Modular Design

discrete, scalable, reusable modules of isolated,
self-contained functional elements;

simple modules with objective tasks

good interface design (what it needs and what it provides)

information hiding (abstraction)

object oriented design

disadvantage is increase in communication
network sockets and hi-level remote objects.

simple examples of modular design:
hardware: computer parts software: IRAF

F.Ferrari

Open Source Tools � Operating System: Linux

Many �avors (distributions):
Debian (servers), Ubuntu (development), Fedora (SOAR).

Tools quality and availability.
∗ my system: 1427 installed packages (8 Gb), 24692 available.
∗ programming languages (C/C++, Java, Perl, Python,
Fortran),
∗ text processors and editors (OpenO�ce, LATEX),

∗ scienti�c and data analysis tools (Scilab, Octave, Maxima,

Gnuplot)

Native multitask, multiuser, networkable system.
Extensively tested on many environments:
desktops, servers, development.

Huge (and growing) scienti�c community of users and
developers.

F.Ferrari

Open Source Tools � Programming language: Python

Object oriented paradigm, imperative, dynamic typed;
Emphasizes programmer productivity, code readability;

Multi-plataform (Linux, Mac, MS-Windows, cell phones,
...)
Large and comprehensive standard library, �batteries
included�

Powerful and easy to integrate external libraries
PyFITS, NumPy, SciPy, PyRAF, PyRO,
PyLab/Matplotlib.
STSDAS, astLib, AstroLib (IDLs twin), PyMIDAS,
EphemPy, ...

data handling capabilities
high level data types (lists, dictionaries, sets, arrays, ...)

Exceptions: C/C++ for bottlenecks, hardware drivers,
migrating code

F.Ferrari

(1 minute Python Example)

F.Ferrari

Open Source Tools � Formats

Data: (dependant on �le complexity and size):

FITS images and tables

normal or Gzip compressed plain text �les

optionally XML for con�g and small structured �les

Documentation:

LATEX, OpenO�ce, PDF, HTML

preference for convertable and web formats

F.Ferrari

Open Source Tools Philosophy

Scienti�c reserch has the paradigm of �open source�

Focus on human resources, not only on products.

Not cheaper, neither easier,

but works better for longer.

F.Ferrari

System Availability

Source code available, even if c©
Monthly snapshots (at least), data server or CVS

code freeze versions regularly

Documentation is critical (means availability)
user's manual: what is, who did, what does, how to and
not to use, real examples
programmers manual: program structure, API,
protocols, interfaces, tools, external codes, ...
source code comments: header � �le and author
name, date, version, comments; classes or functions �
descriptions, interface, on relevant code.

Comments are better the farther the author is.

If your program is not well documented, it is useless without

you.

F.Ferrari

General Structure
Software Point of View

core = control center = command center

F.Ferrari

The Command/Control Center

Abstraction layer
between world and
hardware

World communication
no hardware dependent
commands

Hardware
communication
hardware dependent
commands

one software module per
hardware part (Etalon,
iBTF, EMCCD, ...)

F.Ferrari

Software and Hardware

F.Ferrari

The Hardware Drivers

Complete Dummy mode for
no-hardware tests

Results in relevant physical units
calibration curve inside drivers
pulse→degrees,

capacitance→distance, ...

LabView, ArcView, SML ?!

F.Ferrari

The BTFI Example
Brazilian Tunable Filter Imager

F.Ferrari

BTFI Software Structure

F.Ferrari

Elements

KFCC � Keith-Fernando Control Center
Phase I, II, III, IV

GCC � Giseli Control Center
Middleware, Core of the system

Instruments
Device(LabView), Software driver, Hardware

Data Analysis
Corrections, Calibrations, Data science-ready

F.Ferrari

KFCC � Keith-Fernando Command Center

Phase I: simple elementar (atomic) commands
one-to-one correspondence with GCC set of commands
shutter.open(), ccd.integrate()

Phase II: small set of atomic (molecular) commands
take_image(), make_datacube(), ...

Phase III: high complexity commands
lambda_calibrate(), gap_determination(), ...

Phase IV: Final KFCC for SOAR
LabView'ed, Inspired in SOI, ready for use

F.Ferrari

KFCC � Phase I

F.Ferrari

GCC

Middleware: KFCC � Instruments
bridge between languages, protocols, plataforms

Core of the system

Set of elementar atomic commands only

hi-level to observer software (HLCP),
mid-level to instruments software (MLCP)

Basic error checking

Resource locking (race conditions avoidance)

Con�guration variables acessible to all systems

Status GUI with all information (read-only)

F.Ferrari

Data Processing

F.Ferrari

Waterfal Development Model

F.Ferrari

Iterative Incremental Development Model

Hardware drivers Data Processing Command Center GUI

F.Ferrari

Scienti�c Visualization

3Dslicer http://www.slicer.org/

VTK - Visualization Toolkit http://public.kitware.com/VTK/index.php

VisIt visualization Tool https://wci.llnl.gov/codes/visit/home.html

Teem - representing, processing, and visualizing scienti�c raster
data.

http://teem.sourceforge.net/

Scienti�c Computing and Imaging (SCI) Institute
(many OpenSource data visualization tools)

http://www.sci.utah.edu/index.html

DISLIN Scienti�c Plotting Software http://www.dislin.de/

F.Ferrari

Python Resources

PyRO - Remote Objects http://pyro.sourceforge.net/

Psyco - otimization http://psyco.sourceforge.net/

AstroPy - astronomical resources
http://www.astro.washington.edu/owen/AstroPy.html

PyEphem http://rhodesmill.org/pyephem/

MatPlotLib http://matplotlib.sourceforge.net/

Interactive Data Analysis in Astronomy with Python (IDL style),
Perry Green�eld and Robert Jedrzejewski

http://www.scipy.org/wikis/topical_software/Tutorial

F.Ferrari

