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Facts

Data is beyond astronomers processing capabilities

Cycle observe�go-home�reduce�analyze�publish

not practical

Instruments are sub utilized; lots of unused data

Telescopes automatized, data analysis mostly manual

Solving problems: easier in hardware, cheaper in software
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Rationale
Why do we need a software {system|group|meetings}?

∗ Complex instruments ←− complex software

∗ And data not useful without its software:

∗ Thus software is part of instrument

modern instruments = software + hardware
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What do we need?

We need

hi-level user not aware of hardware details

state-of-art we must trust what we get from software

intelligent system take decisions by itself

automated few decisive user interactions

data processing science out of raw data.

system.

Besides: On-the-�y procedures, pipelined, astronomer-friendly

F.Ferrari



How to put so many pieces together?

Individual processes known (mostly),
but how to integrate them into One System?
Humans: Portuguese, Spanish, French, English, ...
Computers: C/C++, Python, IDL, LabView, ArcView, SML,
VBasic.
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Software System Guidelines

development,
portability,
integration,
maintenance,

usability
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Modular Design

discrete, scalable, reusable modules of isolated,
self-contained functional elements;

simple modules with objective tasks

good interface design (what it needs and what it provides)

information hiding (abstraction)

object oriented design

disadvantage is increase in communication
network sockets and hi-level remote objects.

simple examples of modular design:
hardware: computer parts software: IRAF
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Open Source Tools � Operating System: Linux

Many �avors (distributions):
Debian (servers), Ubuntu (development), Fedora (SOAR).

Tools quality and availability.
∗ my system: 1427 installed packages (8 Gb), 24692 available.
∗ programming languages (C/C++, Java, Perl, Python,
Fortran),
∗ text processors and editors (OpenO�ce, LATEX),

∗ scienti�c and data analysis tools (Scilab, Octave, Maxima,

Gnuplot)

Native multitask, multiuser, networkable system.
Extensively tested on many environments:
desktops, servers, development.

Huge (and growing) scienti�c community of users and
developers.
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Open Source Tools � Programming language: Python

Object oriented paradigm, imperative, dynamic typed;
Emphasizes programmer productivity, code readability;

Multi-plataform (Linux, Mac, MS-Windows, cell phones,
...)
Large and comprehensive standard library, �batteries
included�

Powerful and easy to integrate external libraries
PyFITS, NumPy, SciPy, PyRAF, PyRO,
PyLab/Matplotlib.
STSDAS, astLib, AstroLib (IDLs twin), PyMIDAS,
EphemPy, ...

data handling capabilities
high level data types (lists, dictionaries, sets, arrays, ...)

Exceptions: C/C++ for bottlenecks, hardware drivers,
migrating code
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(1 minute Python Example)
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Open Source Tools � Formats

Data: (dependant on �le complexity and size):

FITS images and tables

normal or Gzip compressed plain text �les

optionally XML for con�g and small structured �les

Documentation:

LATEX, OpenO�ce, PDF, HTML

preference for convertable and web formats
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Open Source Tools Philosophy

Scienti�c reserch has the paradigm of �open source�

Focus on human resources, not only on products.

Not cheaper, neither easier,

but works better for longer.
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System Availability

Source code available, even if c©
Monthly snapshots (at least), data server or CVS

code freeze versions regularly

Documentation is critical (means availability)
user's manual: what is, who did, what does, how to and
not to use, real examples
programmers manual: program structure, API,
protocols, interfaces, tools, external codes, ...
source code comments: header � �le and author
name, date, version, comments; classes or functions �
descriptions, interface, on relevant code.

Comments are better the farther the author is.

If your program is not well documented, it is useless without

you.
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General Structure
Software Point of View

core = control center = command center
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The Command/Control Center

Abstraction layer
between world and
hardware

World communication
no hardware dependent
commands

Hardware
communication
hardware dependent
commands

one software module per
hardware part (Etalon,
iBTF, EMCCD, ...)
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Software and Hardware
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The Hardware Drivers

Complete Dummy mode for
no-hardware tests

Results in relevant physical units
calibration curve inside drivers
pulse→degrees,

capacitance→distance, ...

LabView, ArcView, SML ?!
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The BTFI Example
Brazilian Tunable Filter Imager

F.Ferrari



BTFI Software Structure
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Elements

KFCC � Keith-Fernando Control Center
Phase I, II, III, IV

GCC � Giseli Control Center
Middleware, Core of the system

Instruments
Device(LabView), Software driver, Hardware

Data Analysis
Corrections, Calibrations, Data science-ready
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KFCC � Keith-Fernando Command Center

Phase I: simple elementar (atomic) commands
one-to-one correspondence with GCC set of commands
shutter.open(), ccd.integrate()

Phase II: small set of atomic (molecular) commands
take_image(), make_datacube(), ...

Phase III: high complexity commands
lambda_calibrate(), gap_determination(), ...

Phase IV: Final KFCC for SOAR
LabView'ed, Inspired in SOI, ready for use
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KFCC � Phase I
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GCC

Middleware: KFCC � Instruments
bridge between languages, protocols, plataforms

Core of the system

Set of elementar atomic commands only

hi-level to observer software (HLCP),
mid-level to instruments software (MLCP)

Basic error checking

Resource locking (race conditions avoidance)

Con�guration variables acessible to all systems

Status GUI with all information (read-only)
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Data Processing
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Waterfal Development Model
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Iterative Incremental Development Model

Hardware drivers Data Processing Command Center GUI
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Scienti�c Visualization

3Dslicer http://www.slicer.org/

VTK - Visualization Toolkit http://public.kitware.com/VTK/index.php

VisIt visualization Tool https://wci.llnl.gov/codes/visit/home.html

Teem - representing, processing, and visualizing scienti�c raster
data.

http://teem.sourceforge.net/

Scienti�c Computing and Imaging (SCI) Institute
(many OpenSource data visualization tools)

http://www.sci.utah.edu/index.html

DISLIN Scienti�c Plotting Software http://www.dislin.de/
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Python Resources

PyRO - Remote Objects http://pyro.sourceforge.net/

Psyco - otimization http://psyco.sourceforge.net/

AstroPy - astronomical resources
http://www.astro.washington.edu/owen/AstroPy.html

PyEphem http://rhodesmill.org/pyephem/

MatPlotLib http://matplotlib.sourceforge.net/

Interactive Data Analysis in Astronomy with Python (IDL style),
Perry Green�eld and Robert Jedrzejewski

http://www.scipy.org/wikis/topical_software/Tutorial
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