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Introduction

In this work we compare several algorithm optimization and parallelisation techniques
useful in the astrophysical context. To test the techniques, we apply it to measure
statistical momenta of stellar orbits in model of galaxies. The momenta in question are
density, mean velocity, velocity dispersion, velocity skewness, velocity kurtosis. These
momenta are quantities projected in the line-of-sight, thus they can be compared with
observables from galaxies, allowing us to infer the abundance of each orbit family in a
given galaxy. In this way, we can build the phase space distribution function of the
galaxy, a procedure called orbit superposition. In order to achieve a reliable result the
algorithm need to be executed on several hundred orbits, so a small running time is
essential. The core program was implemented in Python. The optimization is based in
developing a C Module using the Python/C API, keeping the code nearly identical to its
original and in the same time using techniques for parallelism available in C. This is in
strong contrast with other techniques which require a great amount of code refactoring.
We achieved a performance gain of 10 times the original running time which is
proportional to the number of cores in the machine.

Orbit Theory Review

The orbits we want to study can be integrate using the Hamiltonean formalism. The
Hamiltonean per unit mass in cartesian coordinates is
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We can also write the hamiltonean in term of the homeoid vector m,
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Here $,ϕ, z are cylindrical coordinates and Lz = $2ϕ̇. In this way, the Hamiltonean is
function only of m and ṁ
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The total energy per unit mass
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and the angular momentum z component Lz are integrals of motion, which restricts
the region in the phase space available to the orbit. Equation (3) may be readed as a
relation between three variables ($, z , vz) and two integral of motion (E , Lz). The
quantity Φeff ≡ Φ($, z) + L2

z/2$2 is called the effectived potential. The region available
to the orbit is limited by the zero velocity curve.
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To map the galaxy phase space we must

• Choose an energy Ei
•To this energy corresponds an equatorial circular orbit with $c and v 2

c ≡ $c(∂Φ/∂$)z=0

given by the relation E = 1
2v

2
c + Φ($c, z = 0)

• Calculate the correspondent maximum momentum Lz ,max,i = $c vc
• Create a sequence of momenta Lz ,ij = βj Lz ,max,i - For each Lz ,ij , sample the radius $k,
k = 1, . . . ,N$, on the correspondent ZVCij , between $min and $max (both solutions of
Equation

• Calculate zk from Equation

• Leave the star at position $k, zk, with velocities v$ = 0, vz = 0 and vϕ = Lz/$ and
integrate its orbit for several crossing times.

Measurements made from orbit algorithms

The orbit measurement algorithm extracts from the observational data the following
information:
Density Σ(R), Velocity vLOS , Velocity dispersion σLOS , Skewness ξ3, Kurtosis ξ4

Figure: Orbit in 3D space (left) and its projected moments in the line-of-sight (right).
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CUDA

This API works as a medium to run algorithms in Nvidia graphics card. The code do not
run on the GPU directly, you need to crack down your algorithm and send the
kernel method to run on the device. The device is logically divided in a grid, blocks and
threads. The grid has a number of blocks especified in the method call and each block
has a number of threads also especified in the call. Each block has an shared memory,
making all threads whitin it able to use it, but threads between blocks cannot
communicate.

Figure: The virtual division of the graphics card with an <<<3,24>>>method call.

You need to transfer the data between the GPU and CPU, which slows down the
performance. Also the debugging of CUDA programs can be so much more time
consuming than Raw C or OpenMP’s and it do not run in every graphical card, only in
Nvdia CUDA enabled ones.

OpenMP

The OpenMP API is simple and fast to use and develop. Its application is made easy
with already existing code. All the parallelization is done by adding the API directives in
the form of commentaries. You can setup and tweak each loop only with its keywords
and the API will do the rest. In the code below the only thing you need to add is
the pragma omp parallel for directive and compile the code with OpenMP libraries.

Figure: Example of OpenMP pragma omp directive usage and its sketch in the CPU’s cores

Benchmarking

We took some sample algorithms and implemented them in both technologies and in
Raw C to have a control group. As the algorithms are simple, we executed them 104

times with a for loop to have an mesurable time. The amount of data handled is also
expressive, a is an vector with 4× 105 bytes of data, an 105-dimension float vector.

Table: Benchmark Timings in 104 iterations

Algorithm CUDA time OpenMP time Raw C time
Development Execution Development Execution Development Execution√

a 2 hours ≤ 0.5 s 15 min 1 s 10 min 2 s
ab 2 Hours ≤ 0.5 s 15 min 1 s 10 min 2 s
/ 2 Hours ≤ 0.5 s 15 min 1 s 10 min 2 s
∗ 2 Hours ≤ 0.5 s 15 min 1 s 10 min 2 s
ā 4 Hours ≤ 1 s 30 min 7 s 20 min 20 s
σ 4 Hours ≤ 1 s 30 min 8 s 20 min 20 s

Conclusions

We showed that the CUDA’s performance gain is better than OpenMP’s, nevertheless it
has an expensive development time due to its hardware-oriented API. The time expend
with CUDA coding, refactoring and debugging is not worth the performance boost in the
context of the algorithms we usually use in the astrophysics field, except for very
particular cases. The OpenMP is so easy that its use do not add significative amount of
time to the algorithm developing process. We can write C code almost unchangable to
its original and be able to use all the power available in idle cores in the CPU. Also, we
can wrap the OpenMP code to others programming languages easily. If you are willing
for an fast and easy solution, OpenMP is the choice, but if you want to enhance an
algorithm that you will use over and over again and its runtime is huge the CUDA API
will serve you well.
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