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In this work, it is proposed a new family of potentials for path planning algorithms, one
kind to the goal and other to the obstacles. With these new potentials it is possible to
parameterize the potential scale length and strength easily, providing better control over
the moving object path characteristics. In this way, the path problem can be treated
analytically. For example, the minimum distance between the moving object and the
obstacles can be calculated as a function of the potential parameters. Simulations are
made to test its ability to guide a vehicle through an obstacle-free path towards the
goal. The success rate of the moving object on reaching the goal is compared with the
potential parameters and with obstacle configuration and distribution parameters.
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1. Introduction

In many situations, it may be necessary to guide a moving object (MO) to a definite
configuration in its degrees of freedom. In these situations, the movements may be
done while avoiding certain positions where the MO collide with other objects
in space, the obstacles. This is the case of a vehicle in a street, a robot arm in
an industry or the task of moving a piano out of a room. In these situations, a
valuable virtue an autonomous MO may have is the ability to guide itself to a
defined goal while avoiding the obstacles. Several techniques, called path planning
algorithms, claim to solve this problem by using, for example, road map methods,
cell decomposition or potential field methods.1 Potential field methods, such as
the one presented here, are important because of its formal simplicity and low
computational cost and low complexity.

2. The Potential Field Method

The potential field method1–4 consists in assigning to each obstacle and goal, a
repulsive and attractive virtual potential, respectively. In this way, virtual forces
will cause the MO to be repelled by the obstacles and attracted by the goal. Po-
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tential field method have the advantage of not being computationally expensive,
being possible to calculate a path between hundreds of obstacles even with simple
processors, for example those found in embedded systems. Further, its expansion
to higher dimensional spaces is analytically simple and the increase in computation
raises linearly with the space dimension. With other methods, e.g. road map, C-
space or cell decomposition, computation raises as a power of the space dimension
and the need of memory is many times greater.

Besides its virtues, one limitation of potential field methods are local minima,
points where the potential are constant and hence the force is zero. In these points,
the MO is trapped and the movement ceases although the goal has not been reached.
So these algorithms are not complete in the sense that it is not guaranteed that
they find a path to the goal, if it exists. Anyway, there are various techniques that
attempt to overcome these limitations, for example by using harmonic functions
in the potential,5 by using a global path planner or heuristics.6 Most methods
that saves the MO from these local minimum trap in general can be successfully
adapted to the method presented in this work. Although this is critical, here we
will be concerned with the idiosyncrasies of the current potential family; we shall
address the specific problem of local minima in future work.

Another important issue regarding potential field methods is the situation of
goals non-reachable with obstacles nearby (GNRON), as explained in Ref. 7. In
this case, obstacles too close to the goal do not allow the MO to reach it, a local
minimum. With the potentials used in this work, it may be possible to avoid this
situation by choosing adequate potential parameters to limit the obstacle potential
range.

The method can also be used in conjunction with other methods, leaving the
large scale planning to the potential field algorithm and using an alternative method
for local planning or in the case of local minimum. Also, in order to apply it to
dynamical environments the algorithm can consider it as a series of static ones,
at each time step the algorithm recalculates the potential field based on the new
positions.

Several authors have studied different potential functions for path planning,
such as Newtonian potentials8 and general inverse distance potentials,1,3 for ex-
ample. In this work, the idea of controlling the path characteristics by means of
the potentials parameters is introduced, being this parameters the potential scale
length and degree. The purpose of this work is to explore the analytical formalism
behind this scenario, providing theoretical tools to investigate and use potential
fields in path planning.

3. The Potentials

Consider a workspace where a point MO, the goal and the N obstacles are located.
In this workspace, the center position of the MO is indicated by the vector q, of
the goal by qg and of the N obstacles by the set {qi}, i = 1 . . .N . We may write a
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vector which points from the MO to the goal and to the obstacles, respectively,

rg ≡ qg − q and ri ≡ qi − q, i = 1 . . .N .

The magnitudes of these vectors, rg and {ri}, are the relative distances in question.
The vectors êg and {êi}, are the normalized versions of rg and {ri}, respectively.
We may now define the obstacles and goal potentials in terms of these quantities.

Different potential functions have been used with path planning algorithms, for
example those proposed by Refs. 3 and 1, which consider an attractive ψ and a
repulsive ϕ potentials

ψ(rg) = A rmg , ϕ(ri) = B

(
1

ri
− 1

a

)
(1)

valid for ri < a and considered 0 for ri > a. The parameters A and B are the
potential intensities, a is the scale length where the repulsion ceases and m the
attractive potential degree, almost invariably set to 1 or 2. A modified version of
these potentials were used by Ref. 7 to solve the GNRON problem, but the poten-
tials resembles the originals in its dependence with the distance. More recently,9

introduced anisotropic potentials with angle varying magnitudes to try to solve the
problem of local minimum (see Section 2). Their potentials angular distribution can
be adapted to the current potentials. The advantage of the new potentials intro-
duced in this work is to allow the control of the overall MO path characteristics by
changing its parameters. It’s worth noting that the formalism developed here does
not depend on the potential functional form, although the specific result does.

3.1. The obstacles potential

Suppose the obstacle repulsive potential ϕ(ri) to be of exponential form, with the
power of the distance as argument. Its range is adjustable by means of a scale length
a and a gradient degree n. We may also consider it normalized at ri = a. Then

ϕ(ri) = exp
[
1−

(ri
a

)n]
. (2)

Being so, the vector force, defined as Fϕ(r) = −∇ϕ(r), is

Fϕ(ri) = −n
a

(ri
a

)n−1

exp
[
1−

(ri
a

)n]
êi. (3)

The potential and force profiles are shown for different n in Figure 1. The minus
sign explicits the fact the force direction at the MO is opposite to the obstacle
location. At a distance ri = a from the obstacle the force is Fϕ(a) = −(n/a)êi,
so the characteristic size and effect of the potential and force of each obstacle
can be controlled by the parameters a and n, respectively (see Section 4). The
radius where the force is maximum, rmax, is given by rmax = a[1− (1/n)]1/n, with
limn→∞ rmax = a. The maximum force which may be experienced at this point is
then Fϕ(rmax) = (1− n)(e1/n/rmax)êi.
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Fig. 1. Obstacles Exponential Family: potential ϕ (top) and force Fϕ (bottom) according to
Eq. (2) and Eq. (3) for n = 1− 9 and 100; n raises in the direction indicated by the arrows.

It should be noted that the force is not infinite as the distance approaches zero.
This may be considered a weakness of the potential, for once the MO passes the
region of maximum force, it will collide with the obstacle. But, since the force
strength is big enough to avoid it, which can be guaranteed by suitably choosing n
and a, there is no problem in a bounded value force. This argument is reinforced
by the results of simulations in Section 5, where no collision occurred, the MO were
only trapped in local minima.

3.2. The goal potential

The goal potential must be such that its attraction raises with distance and the
force nulls once the goal is reached. One simple potential with these characteristics
is the power-law potential,

ψ(rg) =
(rg
b

)m
, (4)

with the same functional form as used in Refs. 3 and 1, but here written to be
normalized at rg = b. Note that m is the potential degree and b the scale length.
The force is then

Fψ(rg) = −m
b

(rg
b

)m−1

êg, (5)

which has the property Fψ(0) = 0, which are needed in order for the MO stop at
the goal.

3.3. Minimum distance to an obstacle

The relative force strength and range between the MO and an obstacle or the goal
are determined by the potentials parameters n, a, m, b and the relative distances
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rg and ri. The minimum distance the MO will approach an obstacle, given all the
potentials parameters above, would be where the obstacle and goal forces balance.
To estimate this distance rmin, suppose the MO, the obstacle and the goal are co-
linear and that rg > ri. So, the equality Fψ(rg) = Fϕ(ri), according to (3) and
(5), can be solved to express the radius where the force balance, i.e., the radius of
minimum approach

rmin = 2a− aξ
1

n−1 exp

[
− 1

n
W

(
− n

n− 1
ξ

n
n−1

)]
, ξ ≡ 1

e

m

n

a

b

(rg
b

)m−1

. (6)

W is the Lambert Function.10 So, with this potential family is possible to analyti-
cally calculate the minimum separation between the MO and the obstacles.

4. Environment Parameters

Besides the potential analytical properties presented above, it is important to know
in how many situations, given a set of parameters, the MO reaches the goal, i.e.,
the success rate (SR), and how it depends in the overall obstacle configuration in
the space.

Two basic parameters indicate how the obstacles populate the space: fulfilling
and spacing. The fulfilling is the fraction of the total available space occupied
by the obstacles. In a 2D environment, for example, this would be the fraction
of the area covered by the obstacles. The spacing is the mean of the distance of
each obstacle and its nearest neighbor, i.e., the mean size of the passages between
obstacles.

Fig. 2. Mean success rates (SR) as a function of obstacle potential degree n, for different obstacles
number N0 = 25, 50, 75 and sizes a = 10, 15, 20. Left: uniform obstacle distribution. Right:
Gaussian obstacle distribution. Further details in the text.
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Fig. 3. Left: Success rate as a function of obstacle size (left panels) and space fulfilling (right
panels) for the case of uniform distribution (top panels) and Gaussian distribution (bottom panels).
In the space fulfilling, for the same a, No raises rightwards. Right: Success rate as a function
of the obstacles spacing, normalized by the space size (DIMx). The part to the left of the dashed
line corresponds to the Gaussian obstacles distribution and the part to the right, the uniform
distribution.

Fig. 4. Two successful cases. Left: uniform distribution, No = 50, a = 15, n = 2. Right: Gaus-
sian distribution, No = 75, a = 15, n = 1.

5. Simulations

Simulations were designed in order to evaluate the SR. They were implemented in
the Python language in a Linux system.a All simulations consisted of a square 2D
space (DIMx=DIMy=500) in which a MO starts near the origin towards a goal in the
opposite corner (see Figure 4). This was done for the potentials presented here are

aThe simulation software may be available upon request to the author.
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easily expandable for N dimensional cases.b All obstacles are circular and their size
corresponds to the parameter a. The description of non circular obstacles would be
a problem of implementing an angular dependence in the potentials, presented here
as circularly symmetric. This would greatly complicates the present development
without significantly improving the basic ideas and results. The simulations were
run for obstacles uniformly distributed in space and for a Gaussian distribution
centered at the center of the square. For the Gaussian case, the dispersion was
σ = DIMx/8. The individual obstacle coordinates were random. For each case, 100
simulations were run with the same set of parameters, except obstacle locations
that were random. In all, b = 120 and m = 1.8. The obstacles sizes varied as
a = {10, 15, 20}, the number of obstacles as No = {25, 50, 75} and the potential
degrees as n = {1, 2, 3, 4, 5, 6, 7, 8, 9}, summing up a total of 16200 simulations. The
MO velocity is constant and the normalized force was used only to indicate the
direction of movement.

6. Discussion

The basic idea behind the functional forms of the potentials (2) and (4) is the control
of the interaction (force strength and range) between the MO and the obstacles or
the goal. This may be done by the parameters a and n: the scale length a specifies
the distance where the potential has a certain value (normalized in our case); the
potential degree n controls the rate at which the potential changes, i.e., the force
strength.

In this way, one may control the distance where the MO will be aware of the
obstacles or the goal. For large values of n in the obstacles, the potential will vanish
rapidly with distance and the MO will discover the obstacles only when getting too
close to them, suffering an abrupt and strong repulsive force. Otherwise, for small
values in n, the MO will be aware of the obstacles at distances very far from them,
since the potential varies slowly with distance. The former situation is adequate
for narrow passages between obstacles. The latter situation is more adequate for
large scale planning, as the MO has an overall picture of the obstacle distribution
in space. The parameter a controls the distance where this interaction with the
potential occurs and may be associated with the obstacle size.

In Figure 2 it is shown the SR as a function of the potential degree n and for
different obstacle number and sizes. For the uniform distribution of obstacles, the
SR raises with n, since, the larger the n, the closer the MO gets to the obstacles,
and thus is able to pass through narrow passages where, for small n, it would be
trapped in. The case of Gaussian obstacle distribution is distinct in behavior. In
general, the lower the n, the greater the SR. This is because with small n the MO
avoids being trapped in narrow passages (local minima) that are more numerous in
a Gaussian distribution. Its sense of the overall obstacle distribution in space forces

bIn fact, it is just a matter of writing the corresponding Euclidean distances in ri and rg.
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it to contour the crowd of obstacles in the center (see Figure 4, left.) Figure 4 shows
typical successful simulations for both cases.

Figure 3 shows the variation of the SR with obstacle size and space fulfilling, for
different obstacle number and sizes. The SR decreases with obstacle sizes (Figure 3,
left panels), with gaps of SR between different number of obstacles. Even so, for
few large (No = 25, a = 20) or for many small (No = 75, a = 10) the SR is
approximately the same, 50− 60%.

The SR behavior with space fulfilling is much more uniform. The SR is indepen-
dent of obstacle number and size individually, but rather a combination of them.
In the uniform distribution (top-right), for example, there is not the gap explained
above; the points lie in a continuous curve as far as they represent an uniform vari-
ation in the space fulfilling. The Gaussian case is not so well behaved, although the
points are more concentrated than in the obstacle size graph. In general, the SR
varies as a decreasing exponential with the space fulfilling.

When the SR is compared with the obstacle spacing (Figure 3 right), it can be
seen that the SR raises with the spacing, since there is local minimum regions where
the MO could be trapped in. Besides, the SR raises continually with the spacing,
be the obstacle distribution whether uniform of Gaussian.

Also, regarding the GNRON problem, it is possible to solve part of the issue by
assigning large values of n to the obstacles near the goal, making these obstacles
potential act at short distances and allowing the MO to get close to them in its
way toward the goal. The obstacle potential degree could be assigned according to
its distance to the goal and to the local space fulfilling.

7. Conclusions

In this work, it is proposed a new parameterized potential family for using in path
planning algorithms. Both the goal and obstacles potentials have variable scale
length and a degree, whose purpose is to provide better control over the path
characteristics. By means of these parameters, the minimum distance between the
moving object and an obstacle can be controlled; it is also possible to derive an
analytical expression to calculate this distance. The success rate of the moving
object in reaching the goal raises with the obstacle potential degree n for uniform
obstacle distribution and decreases with it in the Gaussian distribution, mainly
because of traps between the obstacles.
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