Tools to study Morphological Evolution of Galaxies for 0 < z < 0.5 < 1

Fabricio Ferrari

fabricio@ferrari.pro.br

IMEF–FURG Rio Grande, Brasil

F.Ferrari (IMEF-FURG)

Morphological Evolution of Galaxies

4th J-PAS 1 / 24

Djorgovski and Digital Media Center, Caltech

F.Ferrari (IMEF-FURG)

4th J-PAS 2 / 24

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

• *Hint* on galaxy dynamical state $f(\mathbf{r}, \mathbf{v})$

・ロト ・回ト ・ヨト ・ヨト

- *Hint* on galaxy dynamical state $f(\mathbf{r}, \mathbf{v})$
- Galaxy distribution in the Hubble classification diagram with z
- Galaxy morphology at different environments

- *Hint* on galaxy dynamical state $f(\mathbf{r}, \mathbf{v})$
- Galaxy distribution in the Hubble classification diagram with z
- Galaxy morphology at different environments
- Two-body correlation-function, find clusters, large scale structures
- Galaxy and Universe evolution

イロト イポト イヨト イヨ

What we can

Papovich et al. 2003 ApJ 598 827P

F.Ferrari (IMEF–FURG)

< 🗇 🕨

What we can

JPAS magnitude limit

$$m_{\rm AB} < 25$$
 (?)

Papovich et al. 2003 ApJ 598 827P

F.Ferrari (IMEF-FURG)

4th J-PAS 4 / 24

What we can

Papovich et al. 2003 ApJ 598 827P

JPAS magnitude limit

$$m_{\rm AB} < 25$$
 (?)

A D > A B > A B

F.Ferrari (IMEF-FURG)

4th J-PAS 4 / 24

observation = psf * source + noise

・ロト ・回ト ・ヨト ・ヨト

observation = psf * source + noise

if n = 0 easily solved with Fourier Transform.

but n=0 so we

$$\hat{s} = \frac{\hat{o}}{\hat{p}}\hat{\Phi}$$

 $\hat{\Phi}$ is a band pass filter

observation = psf * source + noise

if n = 0 easily solved with Fourier Transform.

but n=0 so we

$$\hat{s} = rac{\hat{o}}{\hat{p}}\hat{\Phi}$$

 $\hat{\Phi}$ is a band pass filter

PSF variation

$$p = p(x, y, \lambda, t)$$
 $t = t(T, az, alt)$

traditionally in morphology: a sin, immoral, shameful, harmful

Algorithms

- iterative
 - Jansson-Van Cittert
 - Richardson-Lucy (maximum likelihood)
 - Landweber
- non-iterative
 - Wiener (least squares, non-iterative)

most can be combined with wavelet transform to remove noise

Deconvolution techniques

- Wiener deconvolution

Find a filter g so that the *estimated* s

$$\tilde{s} = g * o$$
 $\hat{\tilde{s}} = \hat{g}.\hat{o}$

The Wiener filter g

$$\hat{g}=rac{1}{\hat{
ho}}\left[rac{|\hat{
ho}|^2}{|\hat{
ho}|^2+rac{|\hat{
ho}|^2}{|\hat{s}|^2}}
ight]$$

Deconvolution techniques

- Wiener deconvolution

Find a filter g so that the *estimated* s

$$\tilde{s} = g * o$$
 $\hat{s} = \hat{g}.\hat{o}$

The **Wiener** filter g

$$\hat{g}=rac{1}{\hat{
ho}}\left[rac{|\hat{
ho}|^2}{|\hat{
ho}|^2+rac{|\hat{
ho}|^2}{|\hat{
ho}|^2}}
ight]$$

– Jansson-Van Cittert

$$s^{n+1} = s^n + \alpha(o - h * s^n)$$

term proportional do the residual is added. similar to **Richardson Lucy** or **Landweber**

< ロ > < 同 > < 三 > < 三

How to measure morphology

- Standard Bulge-Disk-Halo decomposition
- Image Simulations (shapelets, multi-gaussian fitting, ...)
- Image moments
- Asymmetry indexes

Available Tools

GIM2D – Galaxy Image 2D Simard et al. 2002, ApJS, **142**, 1

GALFIT Peng et al. 2002, AJ, **124**, 266

it would be nice to have mock images to play with

Examples

A1689 z = 0.186, Pannella (Thesis) 2007

GIM2D

Groth Strip Survey, Simard et al 2002

- Discrete Wavelet Transform DWT
- Image Invariant Moments
- Principal Component Analysis PCA
- Waveleted Principal Component Analysis WPCA

<ロト < 回 > < 回 > < 回 > < 回 >

Discrete Wavelet Transform

multiscale transform

・ロト ・回ト ・ヨト ・ヨ

Image Moments

$$M_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} y^{q} f(x, y) \, dx \, dy \qquad \rightarrow \text{discrete} \rightarrow \qquad M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Image Moments

$$M_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{p} y^{q} f(x, y) \, dx \, dy \qquad \rightarrow \text{discrete} \rightarrow \qquad M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y)$$

Central Normalized Moments

$$\mu_{pq} = \frac{1}{M_{00}} \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} I(x, y)$$

Scale Invariants

$$\eta_{ij} = \frac{\mu_{ij}}{\mu_{00}^{\left(1+\frac{i+j}{2}\right)}}$$

Translation, scale and rotation invariants - Hu (1962) set

. . .

$$l_1 = \eta_{20} + \eta_{02} \tag{1}$$

イロト イヨト イヨト イヨ

$$I_2 = (\eta_{20} - \eta_{02})^2 + (2\eta_{11})^2$$
⁽²⁾

$$I_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$

(3) (4)

Pattern Recognition with Moments

Flusser, Suk, Zitová 2009

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Synthetic example

・ロト ・回ト ・ヨト

Synthetic example

model	μ_{00}	μ_{01}	μ_{02}	μ_{10}	μ_{11}	μ_{12}	μ_{20}	μ_{21}	μ_{22}
gal1	1	0	100	0	0	0	100	0	10 000
gal2	1	0	355	0	37	0	368	0	133 800
gal3	1	0	670	0	229	-0.0011	670	-0.001124	55 4900
gal4	1	0	998	0	716	-0.3436	745	-0.2489	1772000
gal1234	1	0	662	0	319	-0.1133	587	-0.08201	79 5700

 $\mu=0$ means $\mu<10^{-10}$

- * 伊 ト - * 三 ト

Write the data in a basis where all the variables are *uncorrelated*¹.

Usual: PCA in spectral direction \rightarrow eigenspectras useful to compare **common spectral** features between **galaxy pixels**.

Write the data in a basis where all the variables are *uncorrelated*¹.

Usual: PCA in spectral direction \rightarrow eigenspectras useful to compare **common spectral** features between **galaxy pixels**.

To study morphology, PCA in spatial dimension can be useful useful to compare **common morphological** features between a **set of galaxies**. Classification scheme

<ロ> (日) (日) (日) (日) (日)

Write the data in a basis where all the variables are $uncorrelated^{1}$.

Usual: PCA in spectral direction \rightarrow eigenspectras useful to compare **common spectral** features between **galaxy pixels**.

To study morphology, PCA in spatial dimension can be useful useful to compare **common morphological** features between a **set of galaxies**. Classification scheme

Face recognition: eigenfaces

Simulated 'galaxies'. All have a common spherical component)

≣ ► Ξ • Ω < . 4th J-PAS 16 / 24

PCA - eigengalaxies

≣ ▶ ≣ ∽ ९ (~ 4th J-PAS 17 / 24

PCA - eigengalaxies

F.Ferrari (IMEF-FURG)

Morphological Evolution of Galaxies

4th J-PAS 17 / 24

WPCA - removal of instrumental signature

Ferrari et al 2010; Riffel, Riffel, Ferrari & Storchi-Bergmann 2011; Ferrari et al 2012 (in prep)

Morphological Evolution of Galaxies

WPCA NGC 1399

Steiner et al. data - Gemini GMOS

F.Ferrari (IMEF-FURG)

4th J-PAS 19 / 24

・ロト ・回ト ・ヨト ・

Linux + Python + Scipy 200x200 pixels image

ACTION	DURATION
* find object, retrieve data*	1 s
\star deconvolution $\mathcal{F}^{-1}\{\mathcal{F}\}$	1 s
•2D fitting	10 s
\star brightness profile with aberture photometry	1 s
 fit brightness profile 	2 s
* moments calculation	1/10 s
 wavelet transform (6 scales) 	8 s
 PCA (100 images=7s) 	1 s

・ロト ・回ト ・ヨト ・ヨト

1 CPU	1 million objects
★ basic plan	60 days
 premium plan 	1 year

300 10^6 objects basic plan \rightarrow 50 years.

イロン イロン イヨン イヨン

1 CPU	1 million objects
★ basic plan	60 days
 premium plan 	1 year

300 10^6 objects basic plan \rightarrow 50 years.

20 GPUs 500 cores	1 million objects
∗ basic plan	3 hours
 premium plan 	15 hours

300 10^6 objects basic plan \rightarrow 36 days.

- Sérsic index n has physical meaning
- n correlates with R_n, M_B, (Caon et al 1993,..., Kormendy et al 2009)

- Sérsic index n has physical meaning
- n correlates with R_n, M_B, (Caon et al 1993,..., Kormendy et al 2009)
- Merger remnants have higher Sérsic index n > 2 (e.g., F. Bournaud astro-ph/1106.1793)
- Sérsic index increases with number merger events (Kormendy et al 2009)

- Sérsic index n has physical meaning
- n correlates with R_n, M_B, (Caon et al 1993,..., Kormendy et al 2009)
- Merger remnants have higher Sérsic index n > 2 (e.g., F. Bournaud astro-ph/1106.1793)
- Sérsic index increases with number merger events (Kormendy et al 2009)
- Sérsic index correspond to different PDF $f(\mathbf{r}, \mathbf{v})$ (Ciotti 1991)

<ロト < 回 > < 回 > < 回 > < 回 >

- Sérsic index n has physical meaning
- n correlates with R_n, M_B, (Caon et al 1993,..., Kormendy et al 2009)
- Merger remnants have higher Sérsic index n > 2 (e.g., F. Bournaud astro-ph/1106.1793)
- Sérsic index increases with number merger events (Kormendy et al 2009)
- Sérsic index correspond to different PDF $f(\mathbf{r}, \mathbf{v})$ (Ciotti 1991)
- E Sph dichotomy (Kormendy et al 2009)

<ロト < 回 > < 回 > < 回 > < 回 >

- Sérsic index n has physical meaning
- n correlates with R_n, M_B, (Caon et al 1993,..., Kormendy et al 2009)
- Merger remnants have higher Sérsic index n > 2 (e.g., F. Bournaud astro-ph/1106.1793)
- Sérsic index increases with number merger events (Kormendy et al 2009)
- Sérsic index correspond to different PDF $f(\mathbf{r}, \mathbf{v})$ (Ciotti 1991)
- E Sph dichotomy (Kormendy et al 2009)
- Stellar mass, size, and Sérsic index can predict the velocity dispersions in SDSS (Bezanson et al 2011 ApJ **737** 31)

- MGC –Millennium Galaxy Catalogue
- COSMOS Cosmic Evolution Survey
- STAGES Space Telescope Galaxy Evolution Survey
- SAGE Surveying the Agents of Galaxy Evolution

• • • • • • • • • • • • •

Gracias

メロト メロト メヨト メヨト